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FOREWORD

This report: is the result of an in-house effort under Project

1467, "Analysis Methods for Military Flight Vehicle Structures,"

Work Unit 14670313, "Experimental Studies in Fatigue -Craek Prc-a-

gation in USAF Structures."

The manuscript was released by the author in January 1974.

This Technical Memorandum has been reviewed and approved.

5 IS -I.JR.Ch~ief, Solid Mecha-nics Bra~nch

Structures Division
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ABSTRACT

The purpose of this report is to present the concept of load

interaction zones and to detail the reformulation of the Wheeler

and Willenborg et, al. models in a stress intensity factor fox-mat.
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SECrtON, I.

INTRODUCTION

A viable fatigue life prediction capability must provide for a

proper charactarlZation of the localized residual stress state

ganerjared by prior loading so that the influence of this residual

stress state on aubsequent fatigue behavior might be determined.

The crack growth retardation models proposed by Whieeler (1]* and

Willenborg ec. al. (23 have been used to account for both the magni-

tude and oxtent of the crack tip residual stress state generated by

high spectrum loads. in 3onaral, U11o axiruu OXtenlt of alty loal.

generat.ed residual stress scace, i.e., its zone of influence o,-

subm"quanu crack growth behavior, can be defined wilth a

called the toad intoraction zone.

-See T.- f References for num-bers , brac.kets.



SETUON L

LOAD INTERACTION ZONE CONCEPT

A schematic showing the relationship between applied load and

its corresponding load interaction zone is shown in Figure 1.

Load P1 applied at crack length a, develops a zone z, which extends

to some future crack length position a3 . Load P2 aPPlied at crack

length a2 develops a load interaction zone which spans the distance

between a2 and either a 3 or a4. Oae basic assumption of both the

W heeler and Willenborg ot. al. models is that if the load P2 develops
- load into-raetion zone which extends out to or rast the furthest

extent of a previously developed interaction zone, i.e., a2 + z2:!l+Ll.

t! h growz;h increment associated with the P2 ioadiiig is tAalcu1A.;.d

using the steady state equation. Conversely, u crack growth rate

reduction is assumed when the load P 3 applied at crack length position

""2 develops a load interaction zone z3 which is smaller than that

required to reach the furthest extent of any previously developed load

interaction zone boundary, i.e., + 4 (a + zl) or (a 2 + z?)

whtchev.c-.r is largest. Both models assume that the difference between

the load interaction zone boucdariecs is related to the amount of

crack growth rate reduction.

2



SECTION III

PLASTIC ZONE ASSUMPTION

Wheeler (1) assumed that the load lteraction zone z was equal.

to the plastic zone radius size creatod under plane strain loading:

while Willenboro at. al. [2) suggested that the plane stress plastic

zone size (radius) might be more appropriate, i.e.

z 27r (2)

in genr.al. it might be assumed that the load Interaction zone is

a function of the maximum stress intensity factor, ax'ssocatd

with remoce loading) and yield StVe1ngUh, 's#

Consider Figure 2 which shoWs the relationship for a remotely

calculated stress intens:ity factor which is requived for continuous

decay in the assumed load interaction zone such that the furthest

extremity of each zone calculated is coincident. This stress Inten-

sity factor relationship is the minimum one assumed by both Whed:Ler

and Willenborg et. al. modeal; Lo give no retardation. It is derived

using the following equations (see Figure 2 for nomenclature):

Z C zOL- *a (3)

is related to stress intensity using a generalization of ;quations

I and 2.

KSix ) .max ) -- a, a constant (4,

SYS



which can be rearranged in terms of K* KjX, a, and zOL to give

YIax maxaZ . (5)

Stating the Wheeler-Willenborg et., al. retardation concept in a

stress intensity factor format implies that if ax Km a crack

Srowth rate below steady state predictions can be expected for those

max no reduction in crack
cycles associated with Kma. If Km7. max ,n eutini rc

growth rates below steady state predictions is expected for these

cycles.

4



SECTION IV

OVERLOAD AFFECTED CRACK LENGTH

Both Wheeler and Willenborg et. al. models predict a return to

steady state cracking rates subsequent to the application of the

overload as soon as K8. and K~ax are equal. The crack length incre-

meat defined by the condition Kax a jax and Equation 5 is termed

the overload affected crack length (a*) because it is the growth

increment which experiences the influence of the overload created

residual stress field. The overload affected crack length is

predicted by Equation 6:

a - ZOL /K/1r\- aX- (5

ýQx



SECTION V

CRACK GROWTH REDUCTION SCHEMES

The Wheeler and Willenborg et. al. models diverge when consid-

eration is given to how the crack growth rates associated with

Kax _ KGax are reduced below their steady state level. Shown in

Figure 3 is a schematic diagram which compares KV.. to K for the

case of a single large load cycle followed by a large number of low

level constatic amplitude load cycles. The WheeLer model considers

the ratio of re. ,tely applied stress intensity factor to the no

retardation stress inr.,nsity factor as the driving force for retar-

dation, while the Willanborg et. al. model utilizes the difference

between these ==ie t,.o stress ¶-ty factors f~r Als assessment VA

the amount of retardation app] to the low amplitude load induced

crack growth rates.

The Wheeler model was ,' ,:,ed in a stress intensity factor

format but such a '- -asily be developed'. The Wheeler

crack growth model. caru be expressed for each cycle of crack growth

dAKP foz )Mz*. (7a)

or

SC AK P for z ý z (7b)

where the m values found from data derived from several s, ctra

ranged between 1.3 and 2.0.

6



If the load interaction zones are assumed to be linearly related to

the plastic zone size parameters, iLe., if

Z y max (8)ys Vys

then a direct substitution into Equation 7a gives

2mdK) ) p P (9)
da0 C * (

for K;, Ki* . Equation 9 shows the assignment of the Wheelermax

crack growth reduction factor Kd

stress intensity range. It should be noted that the Wheeler model

reduces growth rates by reducing the applied stress intensity range.

While the Willenborg et. al. model was derived using stress

Intensity factor concepts, it has to date b een described using a

stress format: the stress used to calculate the efieicive (local)

stress intensity factor was given by

%f f -RE (10)

with

'RED a ( max (11)

where

a =remotely applied stress

o = stress required to ac'ieve %ax in Figure 3

a max remotely applied maximum cyclic stress related directly

to Kax in Figure 3.

7



Dividing the stresses in Equations 10 and 11 by the characterizing

stress intensity factor coefficient (K/O) for a given geometric

structure and crack length yields a stress intensity factor format

Koff F Kr0 KRMD (12)

with
(13)

The effective (lo•l) stress Intensity factor, Keff, is reduced below

the applied stre'-s intensity factor by a constant (for a given crack

length) as long as a* K-ax" Since the local stress intensity

factor range is the difference between the local maximum and minimum

stress intensity factors, one finds that

'Keff - (I - R - %D)- (',-da ; RW -iK (14)

i.e., the effective (locn1) srr-s intensity range eqt1,ls thp remote

stress Intensity range but the local stress ratio Reff is depressed

below that of the remote stress ratio R7. The crack growth rates are

calculated using an equation which interrelates the influence of stress

intensity range and stress ratio such as the Walker Equation [31

da = (1- eff)n (15)

or Krause-Crooker Equation [4]

d-''d. r max
da . eff . (1 - b Reff)n p (16)

or Elber Equation (5]

da = CE K . (I +q'Reff) p (17)

Constants for Equations 15,16, and 17 should be established for

positive and negative stress ratio data separately for reasons detailed

by Mayle [6J. 8



SUKK~ARY

The load interaction zone concept was presented to generalize

the approach employed by Wheeler [11 and Willenborg et. a& (21 in

the development of crack growth retardation models. A stress inten-

sity factor format was provided for the Wheeler crack growth retar-

dation model with Equation 9 and for the Willenborg et. al. reducing

stress intensity factor model with Equations 12 and 13. The

(overload generated) no retardation intensity factor (K,.) for both

models was defined by Equation 5.

9L'
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